Exercises and problems about diagram groups

Anthony Genevois and Rachel Skipper

January 29, 2024

Exercise 1. 1. Show that the semigroup presentation $\mathcal{P}=\langle a, b \mid a=b\rangle$ is aspherical, i.e. the diagram group $D(\mathcal{P}, w)$ is trivial for every word $w \in\{x, y\}^{*}$.
2. Draw the Squier complex $S(\mathcal{P}, a)$ where $\mathcal{P}=\langle a, b, c, d| a=b, b=c, c=a, c=$ $d, d=a\rangle$. Deduce that the diagram group $D(\mathcal{P}, a)$ is free of rank two.
3. Draw the Squier complex $S\left(\mathcal{P}, a^{2}\right)$ where $\mathcal{P}=\langle a, b, c \mid a=b, b=c, c=a\rangle$. Deduce that the diagram group $D\left(\mathcal{P}, a^{2}\right)$ is free abelian of rank two.
Exercise 2. Let S be a set. A rewriting rule is an ordered pair $\ell \rightarrow r$ of elements of S. A rewriting systems is a collection of rewriting rules. We write $\xrightarrow{*}$ the transitiveclosure of \rightarrow. A rewriting system is terminating if every chain $\ell_{1} \rightarrow \ell_{2} \rightarrow \cdots$ eventually terminates. It is locally confluent if, for all $\ell, r_{1}, r_{2} \in S$ satisfying $\ell \rightarrow r_{1}, r_{2}$, there exists $r \in S$ such that $r_{1}, r_{2} \xrightarrow{*} r$.

1. Fix a terminating and locally confluent rewriting system. Let $a, b \in S$ be two elements in the class of the equivalence relation generated by \rightarrow. Prove that there exists a unique $c \in S$ such that $a, b \xrightarrow{*} c$ and such that there is no element $d \in S$ satisfying $c \rightarrow d$.
2. Let \mathcal{P} be semigroup presentation. Consider the rewriting system given by diagrams over \mathcal{P} and dipole reduction. Prove that it is locally confluent and terminating. Deduce that every diagram admits a unique reduction.

Exercise 3. Prove that finitely generated diagram groups have solvable word problems.
Exercise 4. Prove that the diagram $\operatorname{group} D(\mathcal{P}, a b)$ where

$$
\mathcal{P}=\langle a, b, p, q, r \mid a=a p, b=p b, p=q, q=r, r=p\rangle
$$

is isomorphic to $\mathbb{Z} \imath \mathbb{Z}:=\left(\oplus_{\mathbb{Z}} \mathbb{Z}\right) \rtimes \mathbb{Z}$.
Exercise 5. Let X be a median graph.

1. Let α, β be two geodesics with the same endpoints. Prove that there exists a sequence of geodesics

$$
\gamma_{0}:=\alpha, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n-1}, \gamma_{n}:=\beta
$$

such that, for every $0 \leq i \leq n-1, \gamma_{i+1}$ is obtained from γ_{i} by fiping a 4 -cycle (i.e. replacing two consecutive edges e_{1}, e_{2} with two edges f_{1}, f_{2} whenever $e_{1}, e_{2}, f_{2}, f_{1}$ define a 4 -cycle).
2. Let α be a path. Prove that there exists a sequence of path with the same endpoints

$$
\gamma_{0}:=\alpha, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n-1}, \gamma_{n}
$$

such that γ_{n} is a geodesic and such that each γ_{i+1} is obtained from γ_{i} by adding or removing a backtrack or by fliping a 4 -cycle.
3. Conclude that, given two arbitrary paths with the same endpoints, one can always be obtained from the other by adding or removing backtracks and by fliping 4cycles.

Exercise 6. Let G be a group acting on a median graph X. Let \mathfrak{H} denote the graph whose vertices are the G-orbits of hyperplanes in X and whose edges connect two classes whenever they contain transverse hyperplanes. The goal is to construct a morphism from G to the right-angled Coxeter group $C(\mathfrak{H})$.

1. For every oriented path γ in X, let $w(\gamma)$ denote the word written over the vertexset $V(\mathfrak{H})$ obtained by reading the orbits of hyperplanes successively crossed along γ. Verify that, if γ is a path obtained from γ by fliping a 4-cycle or adding or removing a backtrack, then $w(\gamma)$ and $w\left(\gamma^{\prime}\right)$ are equal in $C(\mathfrak{H})$. Verify that $w(g \gamma)=w(\gamma)$ for every $g \in G$.
2. Fix a vertex $o \in X$, prove that

$$
\Theta:\left\{\begin{array}{rlc}
G & \rightarrow & C(\mathfrak{H}) \\
g & \mapsto & w(\text { path from } o \text { to } g \cdot o)
\end{array}\right.
$$

defines a morphism.
3. Assume that for every hyperplane J and every element $g \in G$, the hyperplanes J and $g J$ are neither transverse nor tangent. Also, assume that, for all transverse hyperplanes J_{1}, J_{2} and every element $g \in G, g J_{2}$ is not tangent to J_{1}. Prove that, for every geodesic γ in $X, w(\gamma)$ is an \mathfrak{H}-reduced word. Deduce that Θ is then injective.

Exercise 7. Let \mathcal{P} be a semigroup presentation.

1. Prove that, if \mathcal{P} is finite (i.e. has finitely many generators and relations), then the graph $M(\mathcal{P})$ is locally finite.
2. Prove that $M(\mathcal{P}, x)$ has infinite cubical dimension when $\mathcal{P}=\left\langle x=x^{2}\right\rangle$.
3. Prove that $M(\mathcal{P}, w)$ has finite cubical dimension if there are only finitely many words equal to w modulo \mathcal{P}. Show that the converse does not hold.
